1. How much heat will be released when 6.44~g of sulfur reacts with excess O_2 according to the following equation?

$$6.44g$$
 $\times \frac{1 \text{ mol } 8}{3298} \times \frac{-791.4 \text{ kJ}}{2 \text{ mol } 5} = \left[-79.6 \text{ kJ} \right]$

2. How much heat will be released when 4.72 g of carbon reacts with excess O_2 according to the following equation?

$$C + O_2 \rightarrow CO_2 \land H = -393.5 \text{ kJ}$$

 $4.72 \text{ gl} \times \frac{1 \text{ mole}}{12 \text{ gl}} \times \frac{-393.5 \text{ kJ}}{1 \text{ mole}} = \left[-154.7 \text{ kJ} \right]$

3. How much heat will be absorbed when 38.2 g of bromine reacts with excess H_2 according to the following equation?

$$H_2 + Br_2 \rightarrow 2HBr \Delta H = +72.80 \text{ kJ}$$

 $38.2g Br_2 \times \frac{Imd Br_2}{159.8g Br_2} \times \frac{+72.80 \text{ kJ}}{Inast Br_2} = \left[+ 17.4 \text{ kJ} \right]$

4. How much heat will be released when 1.48 g of chlorine reacts with excess phosphorus according to the following equation.

1.48 getz ×
$$\frac{1 \text{ motetz}}{70.9 \text{ getz}} \times \frac{-886 \text{ kJ}}{5 \text{ motetz}} = \frac{-3.70 \text{ kJ}}{5 \text{ motetz}}$$

5. What mass of propane, C₃H₈ must be burned in order to produce 76,000 kJ of energy?

-76,000 kJ
$$\times \frac{1 \text{mol G3H8}}{-2200 \text{ kJ}} \times \frac{44 \text{ g (3H8}}{1 \text{ mol G3H8}} = \frac{1520 \text{ g}}{C3H8}$$
 (heat released or produced, exothermic)

6. How much heat will be absorbed when 13.7 g of nitrogen reacts with excess O_2 according to the following equation?

13.7g
$$H_2 \times \frac{1 \text{ mot } N_2}{28 \text{ g Hz}} \times \frac{180 \text{ kJ}}{1 \text{ mot } N_2} = \begin{bmatrix} +88.1 \text{ kJ} \end{bmatrix}$$

7. What mass of iron must react to produce 3600 kJ of energy? $3\text{Fe} + 2\text{O}_2 \rightarrow \text{Fe}_3\text{O}_4 \Delta H = -1120 \text{ kJ}$

8. How much heat will be released when 12.0 g of H_2 reacts with 76.0 g of O_2 according to the following equation? (when one reactant runs out the reaction stops)

Two reactants given
$$2H_2+O_2\rightarrow 2H_2O$$
 $\Delta H=-571.6$ kJ = 192 gOz required breact = limiting reagent problem 12.0 gHz $\times \frac{1 mol O_2}{26H_2} \times \frac{326}{1 mol O_2} = 192$ gOz required breact 26.0 gOz $\times \frac{1 mol O_2}{32$ gOz $\times \frac{1 mol O_2}{32} \times \frac{571.6}{1 mol O_2} = \left[-1358$ kJ available. Oz is limiting