Solutions

UNIT4: SOLUTIONS

All important vocabulary is in Italics and bold.
Describe and give examples of various types of solutions.
Include: suspension, emulsion, colloid, alloy, solute, solvent, soluble, insoluble, miscible, and immiscible
\square Describe the structure of water in terms of electronegativity and the polarity of its chemical bonds. Include: polar and non-polar covalent compounds
\square Explain the solution process of simple ionic and covalent compounds, using visual, particulate representations and chemical equations.
Include: crystal structure, dissociation, hydration, heat of solution
\square Differentiate among saturated, unsaturated, and supersaturated solutions.
\square Explain which factors can affect solubility of solids, liquids and gases. Include: pressure and temperature
\square Use a graph of solubility data to solve problems.
\square Explain freezing-point depression and boiling-point elevation at the molecular level.
\square Differentiate among, and give examples of, the use of various representations of concentration. Include: grams per litre (g / L), \% weight-weight (\% w/w), \% weight-volume (\% w/v), \% volume/volume (\% v/v), parts per million (ppm), parts per billion (ppb), moles per litre (mol/L) (molarity)
\square Solve problems involving calculation for concentration, moles, mass, and volume.
\square Solve problems involving the dilution of solutions.
Include: dilution of stock solutions, mixing common solutions with different volumes and concentrations
\square Explain examples of solubility and precipitation at both the particle and symbolic levels.
\square Use a table of solubility rules to predict the formation of a precipitate.

Additional KEY Terms

Pure	Mixture	Homogeneous	Heterogeneous
Electrolyte	Non-electrolyte		
Colligative Properties			

Answer the following questions on dissociation and the dissolving process:

1. Explain why water is a polar molecule.
2. Describe how the dissolving of sugar and sodium chloride is different.
3. Write the equation for the dissolving of each of the following in water
a. $\mathrm{PbSO}_{4}(s)$
g. $\mathrm{Na}_{2} \mathrm{CO}_{3}(s)$
b. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right) 3(s)$
h. silver dichromate (s)
c. $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{11}(s)$
i. $\operatorname{KBr}(s)$
d. $\mathrm{Ba}(\mathrm{OH})_{2}(s)$
j. iron (III) sulfate (s)
e. $\mathrm{CH}_{3} \mathrm{OH}(l)$
k. potassium permanganate (s)
f. calcium chloride (s)
4. magnesium sulfide(s)

Polar Versus Non-Polar

To practice identifying different kinds of solutions and solids.

In general, "like dissolves like," so that polar solvents dissolve ionic solids and polar molecules, and nonpolar solvents dissolve non-polar molecules. Alcohols, which have properties of both, tend to dissolve in both types of solvents to a degree. Indicate which solutes the following solvents will dissolve by checking the appropriate columns.

	SOLUTES		SOLVENTS		
		WATER	CCl_{4}	Methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$	
a	NaI				
b	Br_{2}				
c	Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$				
d	Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$				
e	KClO_{3}				
f	KMnO_{4}				
g	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$				
h	$\mathrm{C}_{3} \mathrm{H}_{8}$				

Electrolyte vs. Non-Electrolytes

Classify the following compounds as either an electrolyte or a non-electrolyte by checking the appropriate column.

	Compound	Electrolyte	Nonelectrolyte
i	KF		
j	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$		
k	NaOH		
l	$\mathrm{CH}_{3} \mathrm{OH}$		
m	MgCl_{2}		
n	$\mathrm{H}_{2} \mathrm{CO}_{3}$		
o	$\mathrm{C}_{6} \mathrm{H}_{12}$		

Part A

1. Explain why and how temperature affects the solubility of a solid in a liquid.

Part B

Use the solubility curves given to answer the following questions.

Assume the density of water is $1.00 \mathrm{~g} / \mathrm{mL}$

1. Calculate the solubility of each of the following in g of solute $/ 100 \mathrm{~g}$ of water.
a. 0.62 g dissolves in 15.0 mL of water.
b. 75.0 g dissolves in 350.0 mL of water.
c. 0.250 kg dissolves in 1.20 L .
d. 24.0 g dissolves in 280.0 g of water.
2. Determine the solubility of the following in g solute/L water.
a. 260.0 g of a solid dissolves in 1500.0 mL of water.
b. 0.160 kg of a solid dissolves in 225.0 g of water.
3. At what temperature is the solubility of the substance specified? (All in water)
a. $\mathrm{NH}_{4} \mathrm{Cl} 60.0 \mathrm{~g} / 100 \mathrm{~g}$
b. $\mathrm{KNO}_{3} 120.0 \mathrm{~g} / 100 \mathrm{~g}$
c. $\mathrm{NaNO}_{3} 1200.0 \mathrm{~g} / \mathrm{L}$
d. $\mathrm{KClO}_{3} 100.0 \mathrm{~g} / 500.0 \mathrm{~g}$
4. What is the solubility, in $\mathrm{g} / 100 \mathrm{~g}$ water, of the following at the specified temperature?
a. NaNO_{3} at $40^{\circ} \mathrm{C}$
b. $\mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right) 3$ at $25^{\circ} \mathrm{C}$
c. NH_{3} at $30^{\circ} \mathrm{C}$
d. NH 4 Cl at $5^{\circ} \mathrm{C}$
5. How much more NH 4 Cl can you dissolve in 100 g water at $60^{\circ} \mathrm{C}$ than at $20^{\circ} \mathrm{C}$?
6. If you prepared a saturated solution of NaNO_{3} at $80^{\circ} \mathrm{C}$ then cooled it to $30^{\circ} \mathrm{C}$, what would happen? Be specific.
7. At which temperature do NaNO_{3} and KNO_{3} have the same solubility? NaCl and NH_{3} ?
8. How much water is needed to dissolve 65.0 g of NaNO_{3} at $35^{\circ} \mathrm{C}$?
9. A saturated solution of KNO_{3} in 200.0 g of water at $50^{\circ} \mathrm{C}$ is cooled to $20^{\circ} \mathrm{C}$. How much KNO_{3} settles out?
10. What temperature is necessary to dissolve twice as much KNO_{3} as can be dissolved at $30^{\circ} \mathrm{C}$?
11. If the solubility of a solid in water is $118.0 \mathrm{~g} / \mathrm{L}$, how much water would you need to dissolve a piece of the same solid with a mass of 45.0 g ?
12. If 18.0 g of KNO_{3} are dissolved in 15.0 mL of water at $100^{\circ} \mathrm{C}$, at what temperature will the solid begin to settle out?
13. If 40.0 g of KNO_{3} is added to 50.0 mL of water at $40^{\circ} \mathrm{C}$ will it all dissolve? If not, how much would be left over?
If you raised the temperature to $45^{\circ} \mathrm{C}$, will it all dissolve? Give evidence.
14. What temperature is necessary to just dissolve $150 \mathrm{~g}^{\text {of }} \mathrm{KClO}_{3}$ in 200.0 mL of water?
15. If 142 g of $\mathrm{NH}_{4} \mathrm{Cl}$ are dissolved in 350.0 mL of water at $55^{\circ} \mathrm{C}$, is the solution saturated?

Solubility vs. Temperature for Several Substances

Answer the following questions using moles and concentration:

1. Calculate the concentration of a 200.0 mL solution that contains 0.250 moles of solute.
2. Find the concentration of a solution that contains 1.45 moles dissolved in 2.30 L of solution.
3. How many moles of NaOH would be needed to make 50.0 mL of a $0.750 \mathrm{~mol} / \mathrm{L}$ solution?
4. What mass of AgNO_{3} would be needed to make 250.0 mL of a $1.50 \mathrm{~mol} / \mathrm{L}$ solution? $(\mathbf{6 3 . 7} \mathbf{~ g})$
5. What mass of CaCO_{3} would be needed to make 20.0 mL of a $0.400 \mathrm{~mol} / \mathrm{L}$ solution? $(\mathbf{0 . 8 0 1} \mathbf{~ g})$
6. How much solution is needed to dissolve 50.0 g of $\mathrm{K}_{2} \mathrm{SO}_{4}$ to make a $0.500 \mathrm{~mol} / \mathrm{L}$ solution? $(\mathbf{0 . 5 7 4} \mathbf{L})$
7. What volume of solution is required to dissolve 18.04 g of aluminum sulphide to make a 0.160 $\mathrm{mol} / \mathrm{L}$ solution? ($\mathbf{0 . 7 5 0} \mathbf{~ L}$)
8. What mass of sodium sulphate would be needed to make 50.0 mL of $0.150 \mathrm{~mol} / \mathrm{L}$ solution? $(\mathbf{1 . 0 7} \mathbf{~ g})$
9. What is the chloride ion concentration in a $0.250 \mathrm{~mol} / \mathrm{L}$ solution of iron (III) chloride? ($\mathbf{0 . 7 5} \mathbf{~ m o l} / \mathrm{L}$)
10. What is the concentration of sodium ions if 50.0 g of sodium sulphate is dissolved in 750.0 mL of solution? $(0.938 \mathbf{~ m o l} / \mathrm{L})$
11. What mass of cobalt (III) nitrate is needed to make 1.25 L of a solution with a nitrate ion concentration of $0.150 \mathrm{~mol} / \mathrm{L}$? ($\mathbf{1 5 . 3} \mathbf{~ g}$)

Dilutions Worksheet

1) If I have 340 mL of a 0.5 M NaBr solution, what will the concentration be if I add 560 mL more water to it? $\mathbf{0 . 1 9} \mathbf{~ M}$
2) If I dilute 250 mL of 0.10 M lithium acetate solution to a volume of 750 mL , what will the concentration of this solution be? $\mathbf{0 . 0 3 3} \mathbf{~ M}$
3) If I leave 750 mL of 0.50 M sodium chloride solution uncovered on a windowsill and 150 mL of the solvent evaporates, what will the new concentration of the sodium chloride solution be? $\mathbf{0 . 6 3} \mathbf{M}$
4) To what volume would I need to add water to the evaporated solution in problem 3 to get a solution with a concentration of $0.25 \mathrm{M} ? \mathbf{1 5 0 0} \mathbf{~ m L}$

ANSWER THE FOLLOWING QUESTIONS ON STOCK DILUTIONS:

1. Find the final volume of a solution in which a 300.0 mL solution is diluted from 4.0 M to $3.0 \mathrm{M} . \mathbf{0 . 4 0} \mathrm{L}$
2. Find the final concentration when 600.0 mL of $6.00 \mathrm{~mol} / \mathrm{L}$ solution has 200.0 mL of water added to it? $4.50 \mathrm{~mol} / \mathrm{L}$
3. A $0.500 \mathrm{~mol} / \mathrm{L}$ solution is with a volume of 8.00 L . The original concentration was 2.50 M . What was the original volume? 1.60 L
4. Assume we have a solution that is 0.800 M and 70.0 mL . We need a 0.300 M solution. What is the new volume of the solution? 0.187 L
5. After dilution, a $1.70 \mathrm{~mol} / \mathrm{L}$ solution has a volume 50.0 mL . If the original concentration of the solution was $2.00 \mathrm{~mol} / \mathrm{L}$, what was the solution's original volume? 0.0425 L
6. We have 500.0 mL of 3.00 M sodium chloride solution. The solution is diluted to 580.0 mL . What is the new concentration? $2.59 \mathrm{~mol} / \mathrm{L}$
7. 8.00 L of a $0.300 \mathrm{~mol} / \mathrm{L}$ acid must be diluted to $0.0100 \mathrm{~mol} / \mathrm{L}$ before it can safely be put into the sewage system. What is the final volume and how much water must be added? 232 L
8. 60.0 mL of $6.00 \mathrm{~mol} / \mathrm{L}$ Sulfuric acid is diluted to 5.00 L . What is the new concentration? $\mathbf{0 . 0 7 2 0}$ $\mathrm{mol} / \mathrm{L}$
9. Find the final volume when 60.0 mL of 2.50 M is diluted to $1.0 \times 10^{-3} \mathrm{M} .150 \mathrm{~L}$
10. What is the new concentration when a 1.0 L of $0.10 \mathrm{~mol} / \mathrm{L}$ solution is mixed with 1.0 L of $1.0 \mathrm{~mol} / \mathrm{L}$ of the same solution? $0.55 \mathrm{~mol} / \mathrm{L}$
11. What is the new concentration when 400.0 mL of $0.050 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ is mixed with 600.0 mL of 0.020 $\mathrm{mol} / \mathrm{L} \mathrm{HCl}$? $0.032 \mathrm{~mol} / \mathrm{L}$
12. 450.0 mL of $2.40 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is mixed with 375 mL of $8.20 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. What is the new concentration? $5.04 \mathrm{~mol} / \mathrm{L}$
13. Describe how to make 250.0 mL of a 0.10 M solution of hydrochloric acid (HCl) from a solution which is 11.8 M .0 .00212 L
14. What volume of $0.200 \mathrm{~mol} / \mathrm{L}$ copper (II) nitrate is needed to prepare 250.0 mL of a solution with a nitrate ion concentration of $0.0100 \mathrm{~mol} / \mathrm{L} .6 .25 \mathrm{~mL}$

Using the Ion Solubility Chart, identify each of the following compounds as soluble or insoluble (low solubility).

1. tin (III) sulphate
2. nickel (II) iodide
3. lithium carbonate
4. barium phosphate
5. silver iodide
6. lead (II) chloride
7. ammonium bromide
8. copper (I) bromide
9. copper (II) chloride
10. calcium sulfide
11. Identify if the following compounds are soluble or not.
a. barium hydroxide
b. aluminum nitrate
c. magnesium phosphate
d. copper (I) iodide
e. strontium carbonate
f. copper (II) chloride
g. barium sulfide
h. iron (III) sulfate
2.Write balanced precipitation, complete ionic and net ionic equations for the mixing of the following solutions. If no reaction occurs, write "no reaction". Show states.
a. ammonium sulfate and rubidium carbonate
b. sodium hydroxide and nickel (II) chloride
c. strontium hydroxide and calcium iodide
d. ammonium phosphate and barium chloride
e. aluminum nitrate and magnesium sulfate
f. copper (II) chloride and sodium sulfide
g. magnesium bromide and potassium carbonate
h. barium hydroxide and iron (III) nitrate

Solubility Chart

Negative ions	Positive Ions	Solubility
essentially all	alkali ions $\left(\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}\right)$	soluble
essentially all	hydrogen ion H^{+}(aq)	soluble
essentially all	ammonium ion $\left(\mathrm{NH}_{4}^{+}\right)$	soluble
nitrate, $\mathrm{NO}_{3}{ }^{-}$	essentially all	soluble
acetate, $\mathrm{CH}_{3} \mathrm{COO}^{-}$	essentially all (EXCEPT Ag ${ }^{+}$)	soluble
chloride, Cl^{-} bromide, $\mathrm{Br}-$ iodide, I^{-}	$\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Cu}^{+}, \mathrm{Tl}^{+}$	low solubility
	all others	soluble
sulfate, $\mathrm{SO}_{4}{ }^{2-}$	$\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Ra}^{2+}$	low solubility
	all others	soluble
sulfide, S^{2-}	$\begin{aligned} & \text { alkali ions, } \mathrm{H}^{+} \text {(aq) }, \mathrm{NH}_{4}^{+}, \mathrm{Be}^{2+}, \\ & \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Ra}^{2+} \end{aligned}$	soluble
	all others	low solubility
hydroxide, OH^{-}	alkali ions, $\mathrm{H}_{\text {(aq) }}^{+}, \mathrm{NH}_{4}^{+}$, $\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Ra}^{2+}, \mathrm{Tl}^{+}$	soluble
	all others	low solubility
$\begin{aligned} & \text { phosphate, } \mathrm{PO}_{4}{ }^{3-} \\ & \text { carbonate, } \mathrm{CO}_{3}{ }^{2-} \\ & \text { sulfite, } \mathrm{SO}_{3}{ }^{-} \end{aligned}$	alkali ions, $\mathrm{H}^{+}(\mathrm{aq}), \mathrm{NH}_{4}^{+}$	soluble
	all others	low solubility
chromate, $\mathrm{CrO}_{4}{ }^{2-}$	$\mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Ag}^{+}$	low solubility
	all others	soluble

Answer the following questions on precipitate reactions:

1. Write balanced precipitation and net ionic equations for the mixing of the following solutions. If no reaction occurs, write "no reaction". Show states.
a. ammonium sulfate and rubidium carbonate
b. sodium hydroxide and nickel (II) chloride
c. strontium hydroxide and calcium iodide
d. ammonium phosphate and barium chloride
e. aluminum nitrate and magnesium sulfate
f. copper (II) chloride and sodium sulfide
g. magnesium bromide and potassium carbonate
h. barium hydroxide and iron (III) nitrate

The labels have fallen off the bottles of six solutions. Each solution must be identified using precipitate reactions.

The solutions in the bottles which must be identified are:
copper (II) sulphate
sodium carbonate
copper (II) nitrate
ammonium sulphate
barium chloride
zinc sulphate
The bottles were assigned a letter from A to F. Each solution was observed and mixed to determine if the mixture results in a precipitate.

The results were recorded in the tables below:

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}
\mathbf{A}	X	yes	yes	yes	no	yes
\mathbf{B}		X	no	yes	no	no
\mathbf{C}			X	yes	no	no
\mathbf{D}				X	yes	no
\mathbf{E}					X	no
\mathbf{F}						X

Yes $=$ precipitate
No $=$ no precipitate
Use the ion solubility chart BELOW as the major tool for solving this mystery. It is known that solutions containing copper ions are blue. Bottles " C " and " E " are blue.

Ion	Solubility	Exceptions
$\mathrm{NO}_{3}{ }^{-}$	soluble	none
ClO_{4}^{-}	soluble	none ${ }^{+}{ }^{2+}$
Cl^{-}	soluble	except $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+},{ }^{\text {A }} \mathrm{Pb}^{2+}$
1^{-}	soluble	except $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Pb}^{2+}$
$\mathrm{SO}_{4}{ }^{2-}$	soluble	$\begin{aligned} & \text { except } \mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}, \\ & \mathrm{Hg}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Ag}^{+} \end{aligned}$
$\mathrm{CO}_{3}{ }^{2-}$	insoluble	except Group IA and $\mathrm{NH}_{4}{ }^{+}$
$\mathrm{PO}_{4}{ }^{3-}$	insoluble	except Group IA and $\mathrm{NH}_{4}{ }^{+}$
$-\mathrm{OH}$	insoluble	except Group IA, * Ca^{2+}, $\mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}$
S^{2-}	insoluble	except Group IA, IIA and $\mathrm{NH}_{4}{ }^{+}$

> *slightly soluble

Identity of the solution in each bottle:

ANSWER THE FOLLOWING SOLUTIONS REVIEW QUESTIONS:

Including these questions, know ALL your definitions and theory.

1. What mass of solute is in 1.0 L of a 2.5 M solution of NaCl ? $(\mathbf{1 4 5} \mathbf{~ g})$
2. Explain the steps needed to make 535.0 ml of 3.0 M NaOH solution. ($\mathbf{6 4 . 2} \mathbf{g}$ - steps)
3. Find the concentration if 75.0 g of KCl is dissolved in 855.0 ml of solution. ($\mathbf{1 . 1 9 \mathbf { M } \text {) }) ~ (\begin{array} { l l } { \text { (} } \end{array})}$
4. There is only 75.0 g of KOH left in the lab. You need to make a 2.50 M solution; how much Are you able to make? ($\mathbf{5 3 5} \mathbf{~ m L}$)
5. What is the molarity of a 725.0 mL solution containing 45.3 grams of dissolved sodium sulfate? ($\mathbf{0 . 4 3 7}$ M)
6. What mass of aluminum phosphate is needed to prepare 1.25 L of a 0.350 M solution? ($\mathbf{5 5 . 4} \mathbf{~ g}$)
7. What volume of 0.575 M ammonium chloride will contain 0.27 moles of ammonium chloride? ($\mathbf{4 7 0} \mathbf{~ m L}$)
8. Explain three factors that affect solubility.
9. Write a complete, balanced equation for each of the following double displacement reactions. Using the solubility rules provided, label each product as insoluble or soluble.
10. sodium sulfate reacts with barium chloride
11. potassium phosphate reacts with strontium nitrate
12. silver nitrate reacts with sodium sulfide

Basis Solubility Rules

1. All ionic compounds containing Group 1A elements, H^{+}and ammonium ion are soluble.
2. All ionic compounds with Group VII A elements (other than F) and metals are soluble, except those of $\mathrm{Ag}^{+}, \mathrm{Hg}^{+1}$, and Pb^{+2}.
3. All acetates and nitrates are soluble.
4. All sulfates are soluble except those of $\mathrm{Ba}^{+}, \mathrm{Sr}^{+2}, \mathrm{~Pb}^{+2}, \mathrm{Ca}^{+2}, \mathrm{Ag}^{+}, \mathrm{Hg}^{+1}$.
5. Except when bonded with those in rule 1; carbonates, hydroxides, oxides, sulfides, phosphates, chromates and dichromates are insoluble.

Possible long answer questions:

Write a dissociation equation?
What electronegativity means and how it works?
What "like dissolves like" means?
How to prepare a solution or dilution?
What the solubility rules mean and how to use them? (I will give you them on a test)

